Class Reference for E1039 Core & Analysis Software
KalmanFilter Class Reference

#include </dev/shm/kenichi/update-github-e1039-doc/e1039-core/packages/reco/kfitter/KalmanFilter.h>

Public Member Functions

void close ()
 
 KalmanFilter (bool limitedStep=true)
 Real constructor. More...
 
bool initExtrapolator (const PHField *field, const TGeoManager *geom)
 
bool predict (Node &_node)
 Kalman filter steps. More...
 
bool filter (Node &_node)
 
bool smooth (Node &_node, Node &_node_prev)
 
void setCurrTrkpar (Node &_node)
 set the current track parameter using the current node More...
 
void setCurrTrkpar (TrkPar &_trkpar)
 
bool fit_node (Node &_node)
 Fit one node. More...
 
void enableDumpCorrection ()
 Enable the dump mode: stop calc prop matrix, start calc travel length. More...
 

Static Public Member Functions

static KalmanFilterinstance ()
 singlton instance More...
 

Detailed Description

Definition at line 28 of file KalmanFilter.h.

Constructor & Destructor Documentation

◆ KalmanFilter()

KalmanFilter::KalmanFilter ( bool  limitedStep = true)

Real constructor.

Definition at line 39 of file KalmanFilter.cxx.

Referenced by instance().

+ Here is the caller graph for this function:

Member Function Documentation

◆ close()

void KalmanFilter::close ( void  )

Definition at line 31 of file KalmanFilter.cxx.

◆ enableDumpCorrection()

void KalmanFilter::enableDumpCorrection ( )
inline

Enable the dump mode: stop calc prop matrix, start calc travel length.

Definition at line 52 of file KalmanFilter.h.

References GenFitExtrapolator::setLengthCalc(), and GenFitExtrapolator::setPropCalc().

Referenced by VertexFit::InitRun(), and SRecTrack::setZVertex().

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ filter()

bool KalmanFilter::filter ( Node _node)

Get all the predicted state vector and covariance

Calculate the filtered covariance matrix cov_filter = ( c_pred^{-1} + proj^t*G*proj)^{-1}

Calculate the filtered state vector p_filter = c_filter.(c_pred^{-1}.p_pred + h^t.g.measure) Three equations below are mathematically equal, but EQ.2 appears to be faster

Calculate the filtered residule and associated covariance r_filter = m - h.p_filter r_cov_filter = m_cov - h.c_filter.h^t

Calculate the filtered parameter's contribution to chi square chi2 += chi2m + chi2p chi2m = r_filter^t.g.r_filter (contribution from measurement) chi2p = (p_filter-p_pred)^t.c_pred^{-1}.(p_filter - p_pred) (contribution from extrapolator)

Store the filtered state vector

Definition at line 113 of file KalmanFilter.cxx.

References TrkPar::_covar_kf, TrkPar::_state_kf, TrkPar::_z, SMatrix::getABCt(), SMatrix::getABtC(), SMatrix::getAtBC(), Node::getFiltered(), Node::getMeasurement(), Node::getMeasurementCov(), Node::getPredicted(), Node::getProjector(), SMatrix::invertMatrix(), Node::isFilterDone(), Node::isPredictionDone(), LogInfo, Node::setChisq(), and Node::setFilterDone().

Referenced by KalmanTrack::addHit(), and fit_node().

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ fit_node()

bool KalmanFilter::fit_node ( Node _node)

Fit one node.

Definition at line 50 of file KalmanFilter.cxx.

References filter(), and predict().

Referenced by VertexFit::findVertex(), KalmanTrack::getMomentumVertex(), KalmanFitter::processOneTrack(), and SRecTrack::setZVertex().

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ initExtrapolator()

bool KalmanFilter::initExtrapolator ( const PHField field,
const TGeoManager *  geom 
)

Definition at line 45 of file KalmanFilter.cxx.

References GenFitExtrapolator::init().

Referenced by KalmanFitter::KalmanFitter().

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ instance()

KalmanFilter * KalmanFilter::instance ( )
static

singlton instance

Definition at line 21 of file KalmanFilter.cxx.

References KalmanFilter().

Referenced by KalmanTrack::addHit(), KalmanTrack::getMomentumVertex(), VertexFit::InitRun(), KalmanFitter::KalmanFitter(), KalmanTrack::propagateTo(), and SRecTrack::setZVertex().

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ predict()

bool KalmanFilter::predict ( Node _node)

Kalman filter steps.

probably we don't need this (?); Abi

Empty prediction, for debugging purpose

Definition at line 62 of file KalmanFilter.cxx.

References TrkPar::_covar_kf, TrkPar::_state_kf, TrkPar::_z, GenFitExtrapolator::extrapolateTo(), GenFitExtrapolator::getFinalStateWithCov(), Node::getPredicted(), Node::getPropagator(), GenFitExtrapolator::getPropagator(), Node::getZ(), Node::isPredictionDone(), LogInfo, GenFitExtrapolator::setInitialStateWithCov(), and Node::setPredictionDone().

Referenced by fit_node(), and KalmanTrack::propagateTo().

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ setCurrTrkpar() [1/2]

void KalmanFilter::setCurrTrkpar ( Node _node)
inline

set the current track parameter using the current node

Definition at line 45 of file KalmanFilter.h.

References Node::getFiltered().

Referenced by VertexFit::findVertex(), KalmanTrack::getMomentumVertex(), KalmanFitter::processOneTrack(), KalmanTrack::propagateTo(), KalmanFitter::setStartingParameter(), and SRecTrack::setZVertex().

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ setCurrTrkpar() [2/2]

void KalmanFilter::setCurrTrkpar ( TrkPar _trkpar)
inline

Definition at line 46 of file KalmanFilter.h.

◆ smooth()

bool KalmanFilter::smooth ( Node _node,
Node _node_prev 
)

Retrieve related info

Calculate smoothed state vector p_smooth = p_filter + a.(p_prev_smooth - p_prev_pred) a = c_filter.prop_prev^t.c_prev_pred^{-1}

Calculate the covariance of the smoothed state vector c_smooth = c_filter + a.(c_smooth_prev - c_pred_prev).a^t

Fill the smoothed track parameter

Definition at line 187 of file KalmanFilter.cxx.

References TrkPar::_covar_kf, TrkPar::_state_kf, TrkPar::_z, SMatrix::getABCt(), SMatrix::getABtCinv(), Node::getFiltered(), Node::getPredicted(), Node::getPropagator(), Node::getSmoothed(), Node::isFilterDone(), Node::isSmoothDone(), LogInfo, and Node::setSmoothDone().

Referenced by KalmanFitter::processOneTrack().

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

The documentation for this class was generated from the following files: